Time based Activity Inference using Latent Dirichlet Allocation

نویسندگان

  • Tanveer A. Faruquie
  • Prem Kumar Kalra
  • Subhashis Banerjee
چکیده

In this paper we address the problem of time based activity inference in unsupervised manner for an area under surveillance. We use a Latent Dirichlet Allocation based model that captures the activities and how they change over time. We use agglomerative clustering on optical flow vectors to code direction and spatial information. In this model each activity is associated with not only a mixture distribution over these cluster occurrences but also on the distribution over timestamps of their occurrences. Our method thus helps in determining the prominence and the correlation of activities over a period of time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parameter Estimation for the Latent Dirichlet Allocation

We review three algorithms for parameter estimation of the Latent Dirichlet Allocation model: batch variational Bayesian inference, online variational Bayesian inference and inference using collapsed Gibbs sampling. We experimentally compare their time complexity and performance. We find that the online variational Bayesian inference converges faster than the other two inference techniques, wit...

متن کامل

Distributed Online Learning for Latent Dirichlet Allocation

A major obstacle in using Latent Dirichlet Allocation (LDA) is the amount of time it takes for inference, especially for a dataset that starts out large and expands quickly, such as a corpus of blog posts or online news articles. Recent developments in distributed inference algorithms for LDA, as well as minibatchbased online learning algorithms have offered partial solutions for problem. In th...

متن کامل

Language model adaptation using latent dirichlet allocation and an efficient topic inference algorithm

We present an effort to perform topic mixture-based language model adaptation using latent Dirichlet allocation (LDA). We use probabilistic latent semantic analysis (PLSA) to automatically cluster a heterogeneous training corpus, and train an LDAmodel using the resultant topicdocument assignments. Using this LDA model, we then construct topic-specific corpora at the utterance level for interpol...

متن کامل

Online Inference of Topics with Latent Dirichlet Allocation

Inference algorithms for topic models are typically designed to be run over an entire collection of documents after they have been observed. However, in many applications of these models, the collection grows over time, making it infeasible to run batch algorithms repeatedly. This problem can be addressed by using online algorithms, which update estimates of the topics as each document is obser...

متن کامل

Accelerating Collapsed Variational Bayesian Inference for Latent Dirichlet Allocation with Nvidia CUDA Compatible Devices

In this paper, we propose an acceleration of collapsed variational Bayesian (CVB) inference for latent Dirichlet allocation (LDA) by using Nvidia CUDA compatible devices. While LDA is an efficient Bayesian multi-topic document model, it requires complicated computations for parameter estimation in comparison with other simpler document models, e.g. probabilistic latent semantic indexing, etc. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009